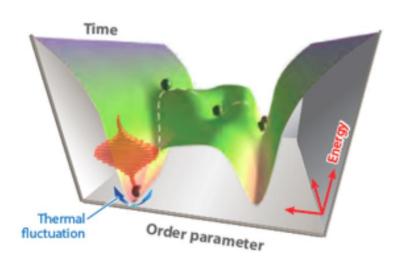


Focused session: Material synthesis and condensed matter physics

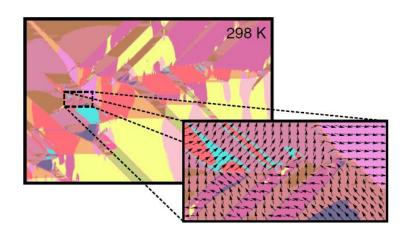
Paul Evans, Haidan Wen, John Freeland, Oleg Shpyrko, Darrell Schlom, and all attendees

Recap of the session "Materials Synthesis & Condensed Matter"


- Oleg Shpyrko: "Coherent X-ray Nano-vision"
- Darrell Schlom: "Establishing how oxide films grow:
 An essential part of the materials by design dream"
- John Freeland: "Summary from "Frontier experiments in condensed matter physics"

 Open floor discussion: Hua Zhou, Jessica McChesney, Jungho kim, Yi Zhu, Ian McNulty,...

Complexity in Condensed Matter


Non-equilibrium (100 ps to s)

e.g. Optical Excitation

Non-homogeneous (10 nm to mm)

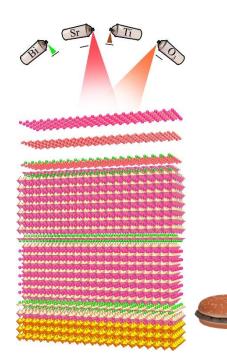
e.g. BaTiO3 phases

R. Averitt (UCSD)

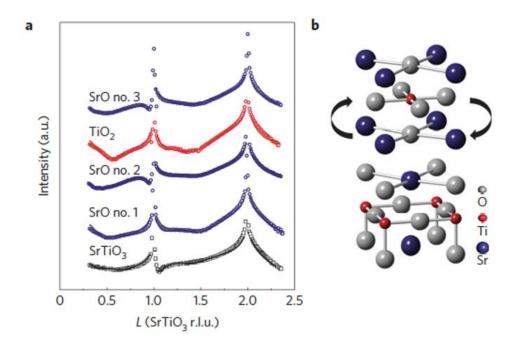
V. Gopalan (PSU)

Science drivers

- Discovering materials with novel properties:
 precision synthesis, defects control, ionic transport,
 vacancy kinetics, interface engineering
- Understanding phase competition and fluctuation: emergent correlation and functionalities, fluctuation at critical points
- Controlling collective energy conversion and transport: collective excitations such as polarons, magnons, skyrmions, CDW, SDW, coupling of multiple degrees of freedom



Examples

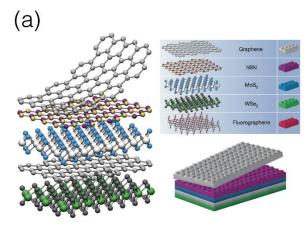

Oxides with hidden properties

Control tool boxes:

Dimensional Confinement
Strain Engineering
Polarization Doping
Interface Engineering
Epitaxial Stabilization

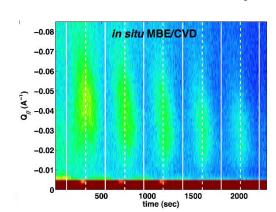
However, growth does not follow cartoon!

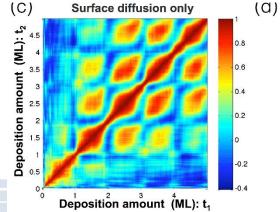
J.H. Lee et al., Nature Materials, 13 879 (2014)

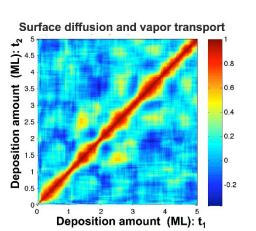

Require in-situ characterization!

Credit to Darrell Schlom

Surface and Interface Dynamics in Thin Film Materials Synthesis

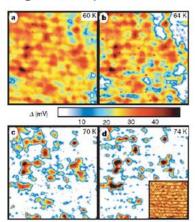

- Science Challenge/Opportunity
 - Interfaces and heterostructure design is rapidly advancing
 - 2D electronic materials
 - · Polar/magnetic/superconducting complex oxide
 - Synthesizing these important electronic materials remains challenging because many surface/interface phenomena are unknown.
- Diffraction-limited storage ring strengths & challenges
 - Coherence techniques probe isolated events within quasicontinuous processes: microscopy, ptychography, XPCS


Credit to Dillon Fong



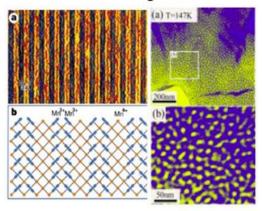
2D electronic materials: stacking

Oxide heterostructures: MBE/CVD/PLD, island formation, atomic/molecular transport

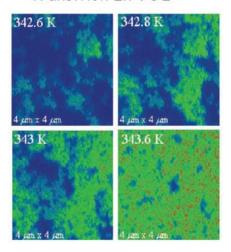


Dynamic and Meso-COBRA Computational **Predictive Modeling** Phase Retrieval Credit to Hua Zhou **Atomic Mapping** High Energy X-ray enabled: High Energy X-ray ♦ Rapid Capture of CTRs **Enabled Fast 3D CTRs** $(3-5 \text{ s Vs.} \sim 1\text{h/CTR} < 30 \text{ KeV})$ ♦ Dynamics Study possible (only static probe <30 KeV) ♦ Operando/Environmental practical (deep and minimal beam effects) H (r.l.u.)⁰ APS MBA-lattice enabled: ♦ Probing Mesoscale Heterogeneity X-ray Optics (submicron/nano-focusing possible) Coherent Techniques at High Energy Sample Stage APS MBA-Lattice

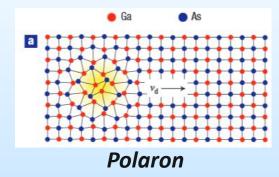
Multiscale X-ray Probe for Mapping Dynamics and Heterogeneity at Reduced Dimensions


Imaging phase separation and collective excitation

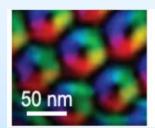
High-Tc cuprates


Gomes et al., Nature 447, 569 (2007) SC Gap in BSCCO (Yazdani Group, Princeton)

CMR manganites



S. Mori et al., *Nature*392, 473 (1998)M. Uehara et al., *Nature*399, 560 (1999)


Metal-Insulator Transition In VO2

Qazilbash et al., Science 318, 1750 (2007) Metal-Insulator Transition in VO2 (Basov Group, UCSD)

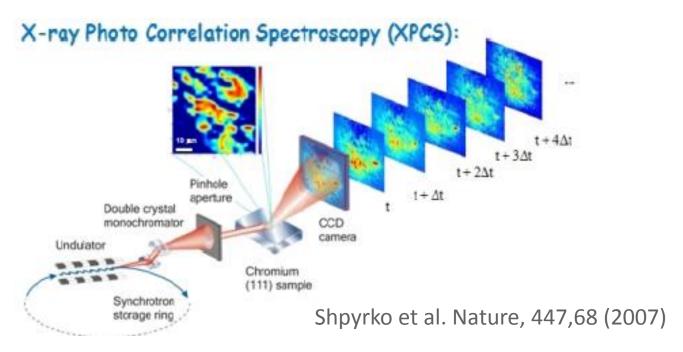


Gaal, et al. Nature 450, 1210 (2007)

Skyrmion

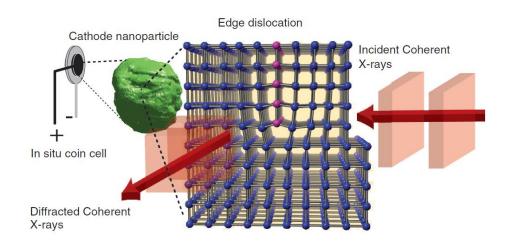
Seki, et al. Science 336, 198 (2012)

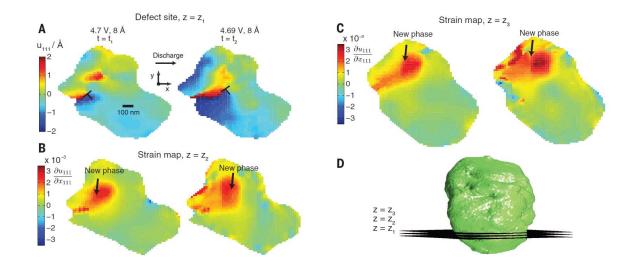
electromagnon


Kubacka, et al. Science, 343, 1333 (2014)

Fluctuations

Electronic, magnetic, structural and quantum fluctuations


Accessible time scale of XPCS with the APS-U


sub-µs

Imaging defects: in-situ in-operando

Ulvestad, et al. Science, 348, 1344 (2015)

Nonequilibrium dynamics

Mesoscopic structural phase progression in photo-excited VO₂

Data not shown

APS-U: From time-resolved scanning microscopy to coherent imaging

- Alleviate beam damage
- Better spatial resolution (300 -> 30nm)
- 3D imaging

Technical advances with APS-U

High Energy

- In-situ in-operando coherent imaging: energy transport, defects
- Materials at extreme conditions: high P and T
- Larger Q: High-speed COBRA

Coherence

- XPCS with enhanced coherence: fluctuation at ns time scales
- Coherent diffraction imaging: defects, in-situ 3D imaging, ultimate limit: 2D: 2 nm, 3D: 4nm
- Nano-APRPES, Nano-RIXS, Nano-XAS...: local properties at nm length scales
- Pump-probe coherent imaging: nonequilibrium states of heterogeneities.

